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A planar liquid layer is bounded below by a rigid plate and above by an interface 
with a passive gas. A steady shear flow is set up by imposing a temperature gradient 
along the layer and driving the motion by thermocapillarity. This dynamic state is 
susceptible to two types of thermal-convective instabilities : (i) stationary longitudinal 
rolls, which involve the classical Marangoni instability studied by Pearson; and (ii) 
unsteady hydrothermal waves, which involve a new mechanism of instability 
deriving its energy from the horizontal temperature gradients. Thermal stability 
characteristics for liquid layers with and without return-flow profiles are presented 
as functions of the Prandtl number of the liquid and the Biot number of the interface. 
Comparisons are made with available experimental observations. 

1. Introduction 
The surface tension of an interface between two immiscible fluids is generally a 

monotonically decreasing function of temperature. Unless opposed by effects of 
contamination, say, any temperature gradient imposed along the interface will 
produce a corresponding gradient in surface tension and hence a bulk fluid motion. 
This type of motion is called thermocapillary or Marangoni convection. 

There are many physical systems involving heat and/or mass transfer across 
interfaces in which thermocapillary convection has an important or even a dominant 
effect. Among them are the migration of a droplet or a bubble in a non-uniform 
temperature field (Young, Goldstein & Block 1959; Papazian, Gutowski & Wilcox 
1979, Subramanian 1981), flame spreading over pools of liquid fuel (Sirignano 1972), 
and the extinction of a burning wick in a shallow layer of fuel (Adler 1970). Complete 
reviews of physical processes where surface-tension gradients are important are given 
by Scriven & Sternling (1960) and by Kenning (1968). 

Our particular interest involves the floating-zone process of bulk crystal growth 
from the melt. This technique is containerless so that the melt cannot pick up 
additional impurities from a melt container. As shown in figure 1 (a ) ,  feed material 
is fed upwards through a ring heater and only a small zone of the material near the 
heater is melted. As the upper rod moves upward, the melt recrystallizes a t  the 
melt-crystal interface to form a single crystal. In Earth-based applications, the size 
of the zone must be small enough so that capillary forces can contain the melt between 
the crystal and the feed against the force of gravity. Somewhat larger melt zones may 

t Present address : Department of Mathematics, Massachusetts Institute of Technology, 
Cambridge, Massachusetts 021 39. 
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FIQURE 1 .  Sketches of (a) the geometry of the floating-zone crystal growth techniques; and (b) the 
typical thermocapillary convection cells seen in a floating zone, after Schwabe et ul. (1978). 

be obtained in the microgravity environment of Space. For these reasons the 
floating-zone technique is deemed important in the processing of single crystals in 
Space. 

The existence and magnitude of thermocapillary convection cells in the melt of the 
floating-zone process (shown in figure 1 b )  has been demonstrated experimentally by 
Schwabe et al. (1978) and by Chun & Wuest (1978a). Numerical simulations of this 
motion have been produced by among others Chun & Wuest (19783) and Clark & 
Wilcox (1980). All these results have shown that thermocapillary motion will assume 
a dominant role in the heat and mass transfer that occurs in the floating-zone process 
in Space and even in some terrestrial applications. 

In crystal growth from the melt, the final product is, hopefully, a high-quality single 
crystal with uniform material properties. One of the problems associated with these 
processing techniques is the development of striations or segregation bands parallel 
to the melt-crystal interface. These striations are regions of varying impurity 
concentration which result in a non-uniform material property distribution in the 
final product. The underlying cause of these striations seems to be a time-dependent 
crystal-growth speed brought about by temperature oscillations in the melt. 

One origin of these temperature oscillations is an instability in the flow field of the 
melt (Wilcox 197 1). In  terrestrial applications, buoyancy forces can drive the 
instability (Carruthers 1976). However, in the near-absence of gravity an instability 
of the basic thermocapillary flow may cause the observed temperature oscillations. 

Schwabe & Scharmann (1979) demonstrated experimentally the existence of a 
thermocapillary instability in small floating half-zones. For a given zone geometry, 
time-dependent temperature and velocity perturbations were observed in the melt 
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when the temperature drop across the half-zone exceeded a well-defined critical value. 
Above this critical value the oscillations possessed a well-defined frequency. In  a 
similar series of experiments, Chun & Wuest (1979) also demonstrated the existence 
of such an instability. In  fact, the critical dimensionless number used to measure the 
temperature drop across the zone, i.e. the Marangoni number, is nearly the same in 
both sets of experiments. Kolker (1980) also observed an instability and the resulting 
crystal striations in a silicon melt with a free surface. He concluded that buoyancy 
could not drive the instability but that  thermocapillary forces could. 

The theoretical development of thermocapillary instabilities has been limited so 
far to static liquid layers heated from below. Pearson (1958) was the first to describe 
the onset of Marangoni convection in this geometry. If a temperature gradient is 
applied perpendicular to the free surface, there can be a purely conductive basic state 
in which the fluid is motionless. Pearson studied the instability of this ideal state. 
However, in most common physical situations the imposed temperature gradient will 
have a component parallel to the free surface so that interfacial motions are 
generated. The resulting basic state is dynamic, not static; it  involves axial 
convection and a shear flow in the bulk. Indeed, in the physical examples discussed 
previously, the temperature gradient is directed primarily along the interface. The 
instability of this dynamic basic state has not yet been considered. 

We begin this investigation by considering thermocapillary flows in two simple, 
planar geometries: an infinite, horizontal liquid layer and a liquid layer in a thin 
two-dimensional slot. Each layer is set into motion by a temperature gradient 
imposed along its free surface. 

Through our consideration of these flow fields we have identified two broad classes 
of instabilities. The first is a convective or thermal instability, whose mechanism 
involves a balance between heat conduction and heat convection at the free surface. 
This balance is relatively unaffected by free-surface deformation. The second class 
is a surface-wave instability, whose mechanism involves the mechanical transfer of 
momentum from the basic state to the disturbances through the Reynolds stress in 
the layer. Free-surface deformation is vitally important to this second stability. In 
the present paper we shall investigate the thermal instabilities and leave the 
surface-wave instabilities to the companion paper (Smith & Davis 1983). 

Since free-surface deformation has a relatively small effect on the thermal 
instability, we shall follow Pearson (1958) and simplify the analysis by limiting 
ourselves to a non-deformable free surface. The thermal instabilities that result are 
of two types. The first takes the form of stationary longitudinal rolls that become 
unstable in much the same way as the classical Marangoni layer heated from below. 
However, these rolls do interact with the underlying shear flow. The energy driving 
the instability comes from the vertical temperature gradient induced by a balance 
between horizontal convection and vertical conduction. These rolls can exist at large 
Prandtl numbers. 

The second thermal instability takes the form of propagating hydrothermal waves. 
These waves derive their energy from the imposed horizontal temperature gradient 
when the Prandtl number of the liquid is small and from the vertical temperature 
gradient when the Prandtl number is large. This new mechanism of instability in 
dynamic basic states is explained in detail. 

The thermal-stability characteristics for each layer are calculated and related to 
the Prandtl number of the liquid and to the Biot number of the interface. Relevant 
experiments are discussed and the calculated results are compared with observation. 
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FIQVRE 2. A sketch of the geometry of the infinite, horizontal liquid layer. A constant temperature 
gradient imposed along the layer gives rise to the indicated basic-state velocity profile. 

2. The three-dimensional disturbance equations 
2.1. The mathematical model 

Consider a liquid layer of infinite horizontal extent bounded by a rigid plane at z = 0 
and a free surface having mean position at  z = d .  The origin of the Cartesian 
coordinate system used lies in the rigid plane and the z-axis points normal to this 
plane into the liquid. The layer, shown in figure 2, is composed of an incompressible 
Newtonian liquid with constant viscosity p, density p, specific heat c p ,  thermal 
conductivity k and unit thermal surface conductance h. The surface tension u of the 
interface varies with the temperature T of the liquid. A constant temperature 
gradient dT/dx = - b, b > 0, is imposed along the layer. There are no body forces. 

The equation of state for the surface tension is approximated by 

(7 = u,-y(T-T,), (2.1) 

where is the temperature of the interface at x = 0, say, v0 is the surface tension 
at this temperature, and y = -du/dT > 0 is the negative rate of change of surface 
tension with temperature. 

We consider the fully three-dimensional system and scale all distances on the 
average liquid depth d .  The velocity vector u = (u, v, w), pressure p ,  temperature 
difference T-To, surface tension (7 and time t are referred to scales ybdlp, y b ,  bd, uo 
and p / y b  respectively. As a result, there arise the following dimensionless groups: 

pdao. (2.2a, b, c,  d )  , P r E A ,  B E - ,  S z -  RG- P C  hd PYbd2 
Pa k k Y2 

R is the Reynolds number, Pr is the Prandtl number, B is the surface Biot number 
and S is the non-dimensional surface-tension number. Another useful dimensionless 
group is the Marangoni number, defined as 

M E RPr. (2.2e) 

In general, the free surface is located at z = 1 + ~ ( x ,  y, t ) ,  where the mean value of 
~ ( x ,  y, t )  is zero. However, we consider the limit of S+ co in which the free surface 
of the liquid layer becomes a planar, non-deformable interface with thermocapillary 
shear stresses in the surface balanced by bulk shear stresses (Davis & Homsy 1980). 
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In this case the mechanical boundary conditions a t  the free surface can be expressed 
as follows: 

w = 0, ( 2 . 3 ~ )  

au i3T _ -  --- 
az ax , (2 .3b)  

( 2 . 3 ~ )  

We assume that the bounding gas is passive, with a constant pressure taken equal 
to zero. 

The equality of heat flux a t  the free surface between the layer and the bounding 

-B(T-T, )+Q on z =  1. ( 2 . 3 d )  
gas requires that 

Here T, is the temperature of the bounding gas far from the interface and Q is an 
imposed heat flux to the surrounding environment which is determined by the 
particular basic-state solution under consideration. Note that Q is not an independent 
parameter. 

aT --- 
aZ 

On the rigid lower plane there is no slip and zero heat flux: 

The governing equations for the liquid layer are the NavierStokes equations, the 
energy equation and the continuity equation : 

R r !  + V ~ V ~ , ~ ]  = - P , ~ + V ~ V ~ ,  ( 2 . 5 ~ )  

(2 .5b)  

Vg,$ = 0. ( 2 . 5 ~ )  

where the summation convention is used over the range i = 1 , 2 , 3 .  

2.2.  The basic states 

We consider two parallel-flow solutions to the system (2.3)-(2.5).  The first, which we 
refer to as the linear-jlow solution, is defined as follows: 

tj = (a) B, rn) = ( z ,O,O) ,  ( 2 . 6 ~ )  

p =  0, (2 .6b)  

F =  - x + ~ M ( ~ - z ~ ) ,  ( 2 . 6 ~ )  
- 
T ,  = -2, 

Q+M. 

( 2 . 6 d )  

(2 .6e)  

The layer has a flat top and an x-component of velocity which is linear in z (i.e. plane 
Couette flow). The temperature field is linear in x as imposed, plus a distribution in 
z obtained from a balance between vertical conduction and horizontal convection. 
We term this latter temperature distribution the $ow-induced temperature field. Here 

5 F L M  132 
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FIGURE 3. A sketch of the geometry of the two-dimensional slot. If d / l  < 1 then a constant 
temperature gradient imposed along the layer can give rise to the indicated approximate basic-state 
velocity profile. 

the flow-induced temperature field makes the fluid a t  the lower plate warmer than 
that a t  the interface. 

The second solution, which we refer to as the return-$ow solution, is defined as 
follows : 

= $p-lz 2 7  B = jjj = 0 f j  = ax, 2 (2.7 a, b,  c,  d )  
- - 

T, = -x,& = 0. 2.7f3 9)  

The layer has a flat top, and the constant horizontal (axial) pressure gradient drives 
a return flow in the layer which maintains zero mass flux through any vertical plane. 
The x-component of velocity is parabolic in z (i.e. a sum of plane Couette and plane 
Poiseuille flows). The temperature field is linear in x as imposed, and the flow-induced 
temperature distribution makes the fluid a t  the lower plate cooler than that at the 
interface. 

The return-flow solution arises from the consideration of the thermocapillary flow 
of a liquid contained in a two-dimensional slot, as shown in figure 3. This slot has 
depth d and length 1, and its aspect ratio is defined as 

A = d / l .  (2.8) 

When a temperature gradient is imposed along the interface by fixing the temperatures 
of the ends of the slot, thermocapillary effects will drive a flow that can be 
approximated asymptotically as A+O. In  this case, there can be a t  leading order 
a core region away from the ends composed of a parallel flow with zero mass flux 
through any vertical plane and end regions of dimension O(A)  where the fluid turns 
around. The solutions in these two regions are connected through asymptotic 
matching. The asymptotic solution for this problem was carried out in detail by Sen 
& Davis (1982). 

In this asymptotic solution, surface curvature is needed to satisfy the contact-angle 
conditions at  the ends. When #-too, we are necessarily limited to a contact angle 
of 90°, which is the only one consistent with a non-deformable free surface. However, 
in the core region of the slot the boundary conditions at the slot ends are not 
considered in solving for the flow field, and so we can properly consider the limit of 
S-too. In this limit, we find that the leading-order solution obtained by the 
asymptotic analysis of Sen & Davis (1982) becomes an exact solution of the outer 
problem, i.e. all O ( A )  terms are identically zero. 
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In  the subsequent stability analysis we shall consider the following generalized 

a = a’( l ) z+W(l )  (22-24, ( 2 . 9 ~ )  

v = w = o ,  (2.9b, c )  

p, = U ” ( l ) ,  (2.9d) 

(2.9e) 

parallel-flow solution : 

G? = - ~ ’ ( 1 )  2 + ~ u ’ ( 1 )  {&z“(i) ( 1  - 24) + +[a’(i) - ~ “ ( 1  )I ( 1  - 23)}, 
- 
T,  =-X, (2.9f 1 
s= -FzIz=1. (2.99) 

When ~ ’ ( 1 )  = 1 and a”(1) = 0 we obtain the linear-flow solution. When a’(1) = 1 and 
~ “ ( 1 )  = 8 we obtain the return-flow solution. 

Note that in our linear stability analysis of the return-flow solution we shall allow 
M and R to be 0 ( 1 )  with respect to A ,  while the complete analysis of Sen & Davis 
(1982) required that these be O(A) .  As noted by Sen & Davis, this is not a 
contradiction, since the return-flow solution (2.7) remains a valid approximation to 
the core flow of the slot even when M and R are O(1).  This new ordering, however, 
will change the flow in the end regions, which we here ignore, and will change the O(A)  
correction to the surface deflection, which vanishes in the limit of S+ m . 

2.3. The linearized disturbance equations 

In  a standard way, we apply infinitesimal disturbances to the system defined by 

(2.10) 
(2.3)-(2.5) as follows: 

After substitution into the governing equations and boundary conditions we linearize 
the system and obtain the following linear disturbance equations : 

(&P,  T )  = (a,p, n + (v’,p’, T’). 

( 2 . 1 1 ~ )  

( 2 . l l b )  

v;,i = 0, (2.11c) 

on z = O ,  (2.11d, e )  v . = - = o  I a T  
a a Z  

where 

au’ a T  
a2 ax 
avi a T  
aZ a y  

a T  
a Z  

- + - = O  on z = 1 ,  

- + - = O  on z = 1 ,  

- + + B T ’ = O  on z = 1 ,  

(2.11 h )  

(2.114 

(2.1 l j )  

To solve this system we assume normal modes of the form 

{u’, w’, w’,p’, T’) = { . i i ( z ) , a ( z ) , . 2 ; ( z ) , ~ ( z ) ,  P(z)>exp [i(ccx+py-at)], (2.12) 

where cc and /? are disturbance wavenumbers in the x- and y-directions respectively. 

5-2 
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In  this form, the disturbance is assumed to be a wave travelling in a direction 
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q5 = tan-' P - ( 2 . 1 3 ~ )  
01 

with respect to the positive x-axis and with an overall wavenumber 

The complex eigenvalue 
k: = (aZ+/P)i. (2.13b) 

(2.14) u = u,+icr, 

contains the growth rate uI and the phase speed cE = u,/k of the disturbance. 
The disturbance equations in normal-mode form are 

(D2- (a2+P2) -iaRa+iRu} ii = ia$ + R Da&, 

{D2 - (a2 + P2) - iaR%+ iRu} 4 = $9, 
{D2- (a2 +P2)  -iaRu+ iRu} & = D9, 

( 2 . 1 5 ~ )  

(2.15b) 

( 2 . 1 5 ~ )  

(2.15d) 

(2.15e) 

{D2 - (a2 + b2) - iaMa + iMu} p = M c  ii + M g  &, 

Dzi, + iaii + $4 = 0, 

a = f i = z i , = D p = O  on z = O ,  (2.15.f) 

& = O  on z = l ,  (2.159) 

Dii+ia!P=O on z = 1 ,  (2.15h) 

D 4 + i b p =  0 on z =  1, (2.15 i) 

D!P+BP=o on z = ~ ,  (2.15j) 

where D = d/dz and alphabetic subscripts denote partial differentiation. 

3. Method of solution: a = 0 

System (2.15) must be solved numerically to characterize completely the three- 
dimensional instability of the basic state. However, we first restrict ourselves here 
to the special case of a = 0. This permits us to examine a simplified problem and thus 
to study the essential physics of the instability mechanism. The general disturbance 
will be treated in $5.  

For a = 0 the continuity equation can be used to eliminate 4 and 9, and we obtain 

(3.1 a) 
the following system : 

(3.1 b )  

( L + i v } L ? = M ~ i i + M ~ z i , ,  (3.1 c) 

i i = z i , = ~ & = ~ ! P = ~  on Z = O ,  (3.ld) 

Dii = Zi, = D2zi,+,@L? = Dp+B!P = 0  on z = 1 ,  (3.1 e )  

{L + iv Pr-'} ii = MPr-' Da&, 

(L + ivPr-') Lzi, = 0,  

( 3 . W  

(3.19) 

where L G D2-P2, 
and 

Y = Mu 

is the complex eigenvalue of this system. I n  this form v is the complex frequency of 
the oscillations normalized with respect to the thermal-diffusion timescale. 
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System (3.1) can be solved exactly. Since we are interested in the neutral conditions 
of the instability, we set the growth rate of the disturbance to zero, and seek the real 
eigenvalue of the system 

If we normalize the eigenfunction as 
VR = MU,. (3.2) 

P(1) = 1, (3.3) 

then we can solve for I% in (3.1 b)  and use & to find & from (3.1 a) .  Knowing these two 
components of the velocity field, we can compute f’ from (3.1 c). We find that has 
the form 

P = M20[2; vR, p, Pr, B, U’( l ) ,  a’’( l)], (3.4) 

where 8 = 8,+i0, is a complex function. Using the normalization (3.3), we obtain 
the characteristic equation for the eigenvalue vR : 

0,[1; vR, p, Pr, B, $(l) ,  a”(l)] = 0. (3-5) 

We use the secant method to determine numerically the root vR of this equation as 
a function of the other parameters. Then the value of M on the neutral curve is found 
from 

and the associated uR is obtained from (3.2), i.e. 

4. Results: u = 0 
4.1. Linear flow : longitudinal rolls 

For the moment we follow Pearson (1958) and assume the stationary onset of 
instability by setting uR = 0. The resulting instability takes the form of stationary 
longitudinal rolls whose axes are aligned in the direction of the bulk flow. Neutral 
curves for Pr = 00 and for several values of B are presented in figure 4. The minimum 
of these curves defines a critical Marangoni number M, and a critical wavenumber 
B,. The increasing behaviour of these critical parameters with B is readily apparent. 

The neutral curve for B = 0 displays the most interesting behaviour. For Pr = co 
it intersects the /3 = 0 line a t  M = 15.49 = 4240,  although its minimum occurs a t  
p = 0.52. As Pr decreases, the value of M a t  the intersection increases, until a t  Pr = 2 
the neutral curve asymptotes to the line = 0. Decreasing Pr further moves the 
vertical asymptote to larger values of /3. This behaviour of the neutral curves is shown 
in figure 5. The sensitivity of M ,  to changes in Pr with B = 0 and B = 1 is shown 
in the right-hand curves of figure 6. 

In  figure 7 ( a )  we show the projection of neutral-disturbance streamlines on a 
cross-section of the layer a t  a constant x-location for Pr = 2.0. For large Pr the rolls 
are very wide with respect to the depth of the layer. The width of the rolls depends 
inversely on the critical wavenumber pC and decreases with decreasing Pr. The 
dependence of the critical wavenumber p, versus the Prandtl number for B = 0 is 
shown in curve ( d )  of figure 15. The centre of each roll is located near the surface, 
in keeping with an instability driven by surface forces. 
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FIGURE 4. Neutral curves for longitudinal rolls in the linear flow with 
Pr = 00 and various values of B. 
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FIGURE 5. Neutral curves for longitudinal rolls in the linear flow with 

B = 0 and various values of Pr. 

4.2. Linear flow : hydrothermal waves 
For non-zero values of uR the characteristic equation (3.5) must be solved numerically 
to obtain the eigenvalue vR. In  this case the instability is in the form of longitudinal 
hydrothermal waves that propagate in either normal direction to the basic flow. 
Neutral curves for Pr = 0.5 and several values o f 3  are presented in figure 8. As with 
longitudinal rolls, increasing the heat transfer from the surface of the layer leads to 
a more stable system. 

Also shown in figure 8 are the neutral curves for longitudinal rolls when Pr = 0.5. 
Here we see that for each value of B the neutral curve for hydrothermal waves 
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FIGURE 6. The critical Marangoni number versus Pr for both longitudinal rolls and 
hydrothermal waves in the linear flow with B = 0 and B = 1 .  

Direction of motion- 

( b )  Pr = 1 

FIGURE 7 .  The projected streamlines at a constant z-location. (a) is for stationary longitudinal rolls 
in the linear flow, and ( b )  is for longitudinal hydrothermal waves in the return flow. 

branches off the neutral curve for longitudinal rolls. At the branch point the 
frequency uR = 0, andit increasesasone moves to theleft along the hydrothermal-wave 
curve. 

In  figure 9 we set B = 0 and examine the dependence of the neutral curves on Pr. 
For small Pr, the hydrothermal-wave neutral curve branches off from the neutral 
curve for longitudinal rolls a t  a point to the right of the minimum. As Pr increases, 
this branch point moves to the left past the minimum and up the neutral curve until 
it reaches infinity when Pr = 2. For larger values of Pr, hydrothermal waves do not 
exist. The sensitivity of M ,  to changes in Pr with B = 0 and B = 1 is also shown in 
figure 6. In  figure 6 we see that the crossover point for the two modes when B = 0 
is Pr = 0.82. For Pr > 0.82, the layer is unstable to longitudinal rolls, while, for 
Pr < 0.82, the layer is unstable to hydrothermal waves. When B = 1 the crossover 
point is Pr = 0.77. 

The projection of some neutral-disturbance streamlines on a cross-section of the 
layer at a constant x-location would be similar to  those shown in figure 7 (b). These 
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FIGURE 8. Neutral curves for longitudinal rolls and hydrothermal waves in the linear flow with 

Pr = 0.5 and various values of B. The longitudinal-roll neutral curves are the dashed lines. 
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streamlines also exhibit a roll-like structure, but they have an asymmetric deformity 
compared with the stationary rolls shown in figure 7 (a ) .  The deformation occurs as 
a slanting of the rolls in the direction of their propagation, which is to the right in 
the case shown. 

4.3. Return flow : stationary rolls 

There are no stationary-roll instabilities for the return flow. The reason is apparent 
when one considers the mechanism of the instability. We shall discuss this in $7.  

4.4. Return flow: hydrothermal waves 

The hydrothermal wave instability is documented for the return flow in figures 10-12. 
Note that the return flow is much more stable (i.e. has higher critical Marangoni 

FIQURE 9. Neutral curves for longitudinal rolls and hydrothermal waves in the linear flow with B = 0 
and various values of Pr. The longitudinal-roll neutral curves are the dashed lines. 
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Wavenumber p 
FIGURE 10. Neutral curves for hydrothermal waves in the return flow with 

Pr = 1.0 and various values of B. 

103 

10 2l 0 1 2 3 4 5 

Wavenumber 0 
FIGURE 11. Neutral curves for hydrothermal waves in the return flow with 

B = 0 and various values of Pr. 

numbers) than the linear flow, while its critical wavenumbers are only slightly 
smaller. The projection of the disturbance streamlines on a cross-section of the layer 
a t  a constant 2-location is shown explicitly in figure 7 ( b )  for Pr = 1. 

5. Method of minimization: a $- 0 
In  $3  our selection of a longitudinally oriented disturbance, i.e. a = 0, led to an exact 
solution of the linearized disturbance equations from which two types of thermal 
instabilities were found : steady longitudinal rolls and longitudinal travelling hydro- 
thermal waves. However, we have no assurance that a = 0 corresponds to the most 
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FIQURE 12. The critical Marangoni number versus Pr for hydrothermal waves 

in the return flow with B = 0 and B = 1. 

dangerous mode for either of these instabilities, because a Squire's theorem for this 
flow is not possib1e.t Thus, we must solve the complete three-dimensional disturbance 
equations (2.15) and minimize the neutral value of the Marangoni number over 
(a, P)-parameter space to find the most dangerous (a, p)-pair. From the results of the 
minimization, we shall be able to describe the preferred mode of instability in the 
entire range of Pr for each of the basic-state flow fields being considered. 

The three-dimensional disturbance equations (2.15) are solved numerically using 
the computer code called SUPORT written by Scott & Watts (1975,1977). From this 
calculation and subsequent uses of the secant method we obtain the Marangoni 
number a t  the point of neutral stability MN and thus define a neutral surface in the 
form 

MN = "[a, p;  Pr, B,  tZ(l), ~ " ( l ) ] .  (5.1) 

The critical Marangoni number M ,  is defined as the global minimum of the neutral 
surface. The location of this minimum (ac, p,) is found as follows. 

We make an initial guess for (a,, p,), estimate the local tangent plane to the neutral 
surface a t  this point and then increment (a, /3) by a small amount in the direction 
of steepest descent. We iterate in this manner until a local minimum of the neutral 
surface Mm is found a t  the point (urn, pm). This sequence of iterations is repeated for 
several values of the Prandtl number in the range (0, a). From the resulting curves 
of M,,, versus Pr we identify the critical Marangoni number of the system as the 
smallest value of M ,  for each Pr. The corresponding values of (am, pm) = (a,, p,) 
and so define the (2, y)-structure of the preferred mode of instability. 

t Gumerman & Homsy (1974) investigated the interaction of a surface-tension-driven convective 
instability with an imposed shear flow by considering a concurrent two-phase Couette flow with 
an independently applied vertical temperature gradient. In their work, as well as in others involving 
stratified shear flows, a Squire's transformation is shown to exist though it does not lead to a Squire's 
theorem. However, in the present problem the imposed horizontal temperature gradient produces 
the shear flow. Because of this tight coupling, even a Squire's transformation does not exist. 
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Prandtl number 
FIGURE 13. The critical Marangoni number Me versus the Prandtl number for the linear flow with 
3 = 0. Curve (a) is for longitudinal hydrothermal waves, (b)  is for oblique hydrothermal waves, 
(c) is for two-dimensional hydrothermal waves and ( d )  is for longitudinal rolls. The lowest value 
of M for each Pr defines Me for the preferred mode. 

6. Results: 01 =I= 0 

I n  $4 we saw that an increase in the Biot number B always results in a more stable 
system. This behaviour also occurs when a + 0. Thus, to simply the following 
discussion we shall confine ourselves to the case B = 0 and then minimize the 
Marangoni number over the neutral surface as described earlier to obtain the 
preferred mode of instability as a function of Pr only. 

6.1. Linear flow 

For Pr < 0.60 the preferred mode consists of two hydrothermal waves propagating 
at the angles f yi with respect to the negative x-axis, where 

yi = MI (6.1) 

and # is defined in ( 2 . 1 3 ~ ) .  The M ,  versus Pr curve for these waves is shown in figure 
13 along with the corresponding curve for longitudinal hydrothermal waves. The 
maximum decrease in M, for the oblique waves with respect to the longitudinal waves 
is 3.2%, occurring at Pr = 0.2. As Pr+O, the two curves become indistinguishable. 
Our numerical calculations show that for both curves M, - Pri as Pr+O. Thus the 
preferred mode of hydrothermal waves is 'nearly ' the longitudinal wave. 

I n  figure 14 we show how the angle of propagation yi varies with Pr. As Pr+O, 
yi+90'. Thus the preferred mode for small Pr is the longitudinal wave. The smallest 
angle of propagation is 82.5', occurring a t  about Pr = 0.4. From the known error of 
20.01 for both wavenumbers a and we can compute the error S$ for the angle yi. 
When Pr > 0.1, 1Syi-l < l.Oo. But, for Pr = 0.01, IS$] = 2.2O, and, for Pr = 0.001, 
IS$l = 7.1'. This decrease in accuracy is due to the decreasing magnitude of both a 
and p as Pr+O. Thus, while figure 14 shows the general trend for yi when Pr is small, 
more accurate calculations are needed to define yi precisely in this range. 
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FIGURE 14. The angle of propagation ~ versus Prandtl number for the preferred mode of oblique 
hydrothermal waves in the linear flow with B = 0. The error 1Sfi.l is 7.1' at Pr = 0.001, 2.2' a t  
Pr = 0.01 and < 1' for Pr > 0.1. 

Prandtl number 
FIQURE 15. The critical wavenumber k, versus the Prandtl number for the linear flow with B = 0. 
Curve (a) is for longitudinal hydrothermal waves, (b) is for oblique hydrothermal waves, ( c )  is for 
two-dimensional hydrothermal waves and (d )  is for longitudinal rolls. The dotted vertical lines are 
a t  Pr = 0.60 and Pr = 1.60. Curves (b)-(d) are for the preferred mode. 

In  figures 15 and 16 we show the critical wavenumber and the critical phase speed 
versus Pr for the preferred mode. The critical frequency is defined as 

kc cRc 
f c = , , .  

When 0.60 < Pr < 1.60, the preferred mode is a two-dimensional hydrothermal 
wave, i.e. /3 = 0, propagating in the direction of the surface flow. The curves of M , ,  
a, and cRC versus Pr for this mode are also shown in figures 13,15 and 16 respectively. 
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FIQURE 16. The critical phase speed cRc versus the Prandtl number for the linear flow with B = 0. 
Curve (a)  is for longitudinal hydrothermal waves, ( b )  is for oblique hydrothermal waves and (c) is 
for two-dimensional hydrothermal waves. The dotted vertical lines are at Pr = 0.60 and Pr = 1.60. 
Curves ( b )  and (c) are for the preferred mode. For Pr > 1.60 the preferred phase speed is zero. 

For all values of Pr > 1.6 longitudinal rolls are preferred. I n  addition, our 
numerical calculations have also shown that a = 0 is the only possible stationary 
mode. For comparison, the curves of M ,  and /3, versus Pr for this mode are shown 
in figures 13 and 15 respectively. 

6.2.  Return $ow 

For all values of Pr, the preferred mode of instability is a hydrothermal wave 
propagating at the angles * @  with respect to the negative x-axis. In  figure 17 we 
present M ,  versus Pr for this preferred mode, for the longitudinal waves of $53 and 
4 ,  i.e. with a = 0, and for the special case of two-dimensional waves, i.e. with /3 = 0. 
As Pr+O, M ,  for the preferred mode approaches the value of M ,  for longitudinal 
waves. At Pr = 0.001 the difference between these two values is - 5.5 %. As in the 
linear-flow case, M ,  - Pri as Pr+ 0. When Pr + co, M ,  -+ 398.5 for the preferred 
mode. This is a decrease of 0.02 % from the limiting value of M ,  for two-dimensional 
waves. 

The angle of propagation @ versus Pr is shown in figure 18. As Pr gets small, @ 
starts to  approach 90'. However, the accuracy problem for @ discussed earlier also 
exists here. For Pr > 0.1, IS@l < 1.1', but, a t  Pr = 0.01, 1691 = 2.9O, and, for 
Pr = 0.001, IS@[ = 8.4'. Thus the maximum that occurs in figure 18 for small Pr may 
be due to the large errors involved in calculating @. As Pr increases, 9 decreases 
smoothly and approaches a limiting value of 7.9' k 0.26' as Pr -+ co. In  figures 19 and 
20 we present the critical wavenumber and the critical phase speed versus Pr for the 
preferred mode. The limiting values as Pr+ 00 are k,+2.47 and cR,+O.0622O. 

7. Discussion 
In  order to characterize the mechanisms of instability we must first identify those 

terms in the governing equations that determine the eigenvalue of the problem. In 
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FIGURE 17. The critical Marangoni number M ,  versus the Prandtl number for the return flow with 
B = 0. Curve (a) is for the preferred mode of oblique hydrothermal waves, ( b )  is for longitudinal 
hydrothermal waves and ( e )  is for two-dimensional hydrothermal waves. 

10-3 10-2 10-1 1 10 1 

Prandtl number 
FIGURE 18. The angle of propagation $versus the Prandtl number for the preferred mode of oblique 
hydrothermal waves in the return flow with B = 0. The error IS$l is 8.4' a t  Pr = 0.001, 2.9' a t  
Pr = 0.01 and smaller than 1' for Pr > 0.1. 

(2.15), which governs the three-dimensional instability of the layers, the velocity field 
is coupled to the temperature field through the thermocapillary shear-stress conditions 
on the interface, viz (2.15h,i). Because of this simple coupling, we can find the 
corresponding velocity field in the layer for any arbitrary temperature disturbance 
of the free surface. In effect, the coupling acts as a simple forcing function for the 
velocity. Once the velocity field is known the eigenvalue of the system is found by 
solving the energy equation (2.15d). Thus the mechanism for the instability is 
associated with a balance between heat convection and heat conduction in the layer. 
The velocity field is important only as it transports heat in the system. Any 
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Prandtl number 

FIGURE 19. The critical wavenumber k, versus the Prandtl number for the preferred mode of 
oblique hydrothermal waves in the return flow with B = 0. 
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FIGURE 20. The critical phase speed cEc versus the Prandtl number for the preferred mode of 

oblique hydrothermal waves in the return flow with B = 0. 

mechanical aspects of the velocity field, such as viscous dissipation, are not important 
in terms of the fundamental mechanisms of the instabilities. 

7.1.  Longitudinal rolls 

In a static liquid layer heated from below, classical Marangoni convection cells appear 
when the temperature gradient normal to the layer is sufficiently large, as shown by 
Pearson (1958). The mechanism for this instability is described as follows. Consider 
a local hot spot on the interface of the layer due to some random temperature 
perturbation. Thermocapillarity will produce a surface flow that draws fluid away 
from this point. By continuity, a vertical velocity field is established that convects 



138 M. K. Smith and 8. H. Davis 

hotter fluid from the interior of the layer to the hot spot on the interface. If the 
temperature gradient across the layer is sufficiently large, the transport of heat by 
convection will be enough to balance or exceed the losses due to heat conduction away 
from the interface. Thus, the elevated temperature of the hot spot will be maintained 
or increased and the convection will continue. 

The basic-state temperature field for the linear flow given by ( 2 . 6 ~ )  contains a 
flow-induced vertical distribution corresponding to the layer being ‘heated from 
below’. Thus there is the possibility that a stationary convective instability, as 
described by Pearson (1958), can arise in this case. We find that such a situation can 
arise only if a = 0, i.e. if the disturbances form longitudinal rolls. In  a static liquid 
layer there is a symmetry attained for every (a, P)-pair, and so the planform of the 
classical Marangoni convection cell cannot be determined from linear theory. The 
addition of a basic-state velocity field eliminates this degeneracy in favour of a 
stationary longitudinal disturbance.t From the results of the three-dimensional 
minimization, we have found that longitudinal rolls are the preferred mode for B = 0 
for Pr > 1.6 and that a = 0 is the only possible stationary mode. 

As the Prandtl number of the fluid is decreased, the critical Marangoni number 
and the critical wavenumber of the instability increase. This behaviour has been 
explained through the use of an energetics analysis which shows how the energy from 
the basic flow is transferred to the disturbances. Details of this analysis can be found 
in Smith (1982). The results of the analysis show that the increasing behaviour of Mc 
and PC with decreasing Pr is due to the stabilizing effect of heat convection by 
horizontal velocity perturbations. The horizontal velocity field uf occurs as a result 
of the coupling between the vertical disturbance velocity and the horizontal basic-state 
velocity field in the convective acceleration term of the momentum equation (3.1 a). 
The magnitude of uf is proportional to Pr-l. When Pr+ co for a fixed Marangoni 
number, viscous forces dominate in setting up the velocity field in the layer and u’ = 0. 
For finite values of Pr, the convective acceleration term in the momentum equation 
causes u’ < 0 when underneath a hot spot on the interface. This in turn produces a 
convective cooling of the interface which tends to stabilize the layer. Thus, for a fixed 
M and P, as the Prandtl number of the fluid is decreased, the layer will become more 
stable. 

To move the system back to the critical neutral point for this decreased value of 
Pr, the convective heating of the hot spot on the interface must be increased. This 
can be done by increasing the Marangoni number, which increases the vertical 
temperature gradients and the magnitude of u’ at the same rate, or by increasing 
the wavenumber, i.e. decreasing the width of the roll, which increases the magnitude 
of the horizontal and the vertical disturbance velocities in the layer. Increasing the 
wavenumber of the roll also increases the thermal dissipation in the layer, but at  a 
slower rate than the increase in the convective heating. Thus a new critical neutral 
point is established at a higher Marangoni number and a larger wavenumber. It is 
important to note that the decrease in the width of the roll as Pr decreases lies in 
the effect of Pr on the convective heating of the interface as shown above and not 
in the use of Pr as a measure of the viscous dissipation in the layer. 

t Similarly, Gumerman & Homsy (1974) also find that the presence of a shear flow eliminates 
the degeneracy of the static layer. In  their work, however, the longitudinal roll does not interact 
with the underlying shear flow, and so the stability characteristics are the same as those of the 
classical static layer. In the present problem, the roll does interact with the shear flow through the 
horizontal temperature field and so has stability characteristics different from the static layer. 
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The physical mechanism for the instability as discussed earlier can now be modified 
to include the effects of the non-static basic-state velocity field for finite values of 
the Prandtl number. A hot fluid line on the interface of the layer parallel to  the x-axis 
produces a vertical velocity field just as before that convects the warmer fluid from 
the interior of the layer to  the interface. As each particle of fluid rises toward the 
hot line, it moves into a region where the basic-state velocity is higher than where 
it came from. This produces a negative horizontal velocity perturbation under the 
line that reduces the convective heating of the interface that occurs as a result of 
the horizontal basic-state temperature and velocity fields. If the temperature 
gradient in the x-direction is large enough, the net convective heating of the interface 
by these horizontal and vertical velocity perturbations will be enough to balance or 
exceed the losses due to thermal conduction away from the interface. Thus the 
elevated temperature of the hot line will be maintained or increased and the 
perturbation convection field will continue. 

The return flow in the layer does not exhibit a stationary convective instability. 
The basic-state temperature field for the return flow given by (2.7e) contains a 
flow-induced vertical temperature distribution corresponding to the layer being 
' cooled from below '. If a temperature disturbance in the form of a hot line develops 
on the interface, the resulting vertical velocity field will convect cooler fluid from the 
interior of the layer to the surface. Thus the convection field will tend to  eliminate 
the disturbance and so unstable longitudinal rolls cannot form. 

7.2. Hydrothermal waves : linear $ow 

For small values of the Prandtl number, a new unsteady mode of instability appears 
in the form of two mirror-image hydrothermal waves that propagate in an oblique 
direction with a component opposite to the direction of the surface flow. 

For small Pr, the preferred mode is a purely longitudinal hydrothermal wave. As 
Pr increases, the angle of propagation 31. decreases from 90' to values about 83' as 
shown in figure 14. The results of the energetics analysis of Smith (1982) show that 
the mechanism of instability involves a transfer of energy from the (axial) horizontal 
basic-state temperature field to  the disturbances through perturbations in the 
horizontal convection field. Physically, this mechanism can be described as follows. 
Consider a local temperature disturbance of the interface in the form of a hot line 
parallel to  the x-axis oscillating a t  some characteristic frequency. Thermocapillarity 
and conservation of mass will produce an oscillating vertical velocity field with a 
phase lag less than 90' behind the oscillating temperature of the disturbance. Because 
of this favourable phase relationship the vertical velocity will generally be convecting 
warm fluid from the interior of the layer to the interface when the disturbance 
temperature is positive, and convecting fluid away from the interface to the warmer 
interior when the disturbance temperature is negative. The net result is an overall 
input of energy to the disturbance from vertical convection. 

Since the viscous forces in the layer are small, a horizontal velocity perturbation 
will be induced as a result of the convective acceleration effects of the fluid moving 
vertically in a linear basic-state velocity field. This velocity perturbation will be 
phased less than 90' ahead of the temperature of the disturbance and so will generally 
increase the convective heating of the interface when the disturbance temperature 
is positive and reduce the convective heating when the disturbance is negative. The 
net result is a large input of energy to the disturbances from the horizontal 
convection. 

For convenience, we define the effective heating of the interface as the total 
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convective heating minus the losses due to conduction. Now, if the temperature 
gradient along the layer is large enough, the effective heating of the interface by the 
disturbance will exactly balance the time rate of change of the interfacial disturbance 
temperature, and the effective heating will be phased exactly 90° ahead of this 
temperature. Thus the disturbance will be maintained. If the temperature gradient 
along the interface is even larger, the phasing will be less than 90° and the temperature 
disturbance will increase. 

The mechanism of instability described above is critically dependent on the 
influence of convective acceleration effects in producing the horizontal velocity field. 
As the Prandtl number increases, these effects are decreased resulting in a decrease 
in the energy input to the disturbances from horizontal convection. Since the effective 
heating of the disturbance can be increased by increasing the Marangoni number and 
by decreasing the wavelength a new critical neutral point is established a t  larger 
values of M and k. 

For 0.60 < Pr < 1.6, two-dimensional hydrothermal waves become the preferred 
mode. Here, vertical convection is destabilizing. Holding M fixed, an increase in Pr 
will cause an increase in vertical convection and the layer becomes unstable. As a 
result, M ,  decreases as Pr increases. 

The largest value of M ,  = 21.27 occurs a t  Pr = 0.6. Therefore, for B = 0 the linear 
flow is always unstable when M > 21.27. 

7.3. Return $ow 

Since longitudinal rolls do not exist for the return flow in the layer, the preferred mode 
is always an obliquely travelling hydrothermal wave. As in the linear-flow case, the 
instability is close to being a longitudinal wave when Pr is small, and the layer 
becomes more stable as Pr increases because of the reduced convective heating of the 
interface. 

The results of the energetics analysis (Smith 1982) show that for small Pr the 
mechanism of instability is a transfer of energy from the horizontal basic-state temperature 
j e l d  to the disturbances through horizontal convection. This is the same mechanism as 
for the small-Prandtl-number case in the linear flow. The basic difference between 
the two cases is that  the flow-induced temperature distribution of the basic state is 
stabilizing for the return flow, For large values of Pr energy transfer from the vertical 
flow-induced temperature distribution to the disturbances through vertical convection 
becomes the dominant mechanism of instability. 

When Pr is large, the thermal field exhibits large changes with depth. Thus a small 
increase in Pr produces large changes in the thermal field which result in increased 
thermal dissipation that stabilizes the layer. Larger Marangoni numbers are needed 
to increase the convective heating of the interface needed to produce neutral stability. 

At Pr = 00 the direction of propagation of the disturbances is only 7 . 9 0 O .  Thus a 
two-dimensional wave is a good approximation to  the preferred mode for large Pr. 
Because + < 90' for all Pr, the disturbance always propagates in a direction with 
a component in the direction opposite to that of the surface flow. 

The largest value of M ,  = 398.5 occurs a t  Pr = co . Therefore, for B = 0 the return 
flow is always unstable when M > 395.8. 

7.4. Application 
In  tables 1 and 2 we present the results of an application of the theory to two specific 
liquid layers each 1 mm in depth and each having B = 0. We compute the following 
dimensional quantities : the critical wavelength A,, the critical frequency f : ,  the 
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Parameter Linear flow Return flow 

p (g cm-l 9-l) 0.88 x - 
k (erg 9-l cm-l "C-l) 
P ($3 cm-3) 2.5 - 
c p  (erg g-' "C-l) 0.84 x 107 - 
(T (dyn cm-l) 720 - 
y (dyn cm-' "C-') 0.43 - 
S 2.32 x loe 
Pr 0.023 - 

MC 6.3 9.6 
kC 0.41 0.36 
'Rc  0.081 0.073 * 86 76 
AC (cm) 1.5 1.75 
f? (Hz) 0.51 0.61 
U c  (cm s-l) 9.6 14.7 

bc ("C cm-') 2 .o 3.0 

- 0.32 x 107 

- 

c;*Lc (cm 9-l) 0.78 1 .1  

Ca 1.2 x 10-4  1.8 x 10-4 

TABLE 1 .  An application of the theory to a 1 mm layer of liquid silicon at 1410 OC 

Parameter Linear flow Return flow 

p (g cm-' 0) 2.78 x - 
k (erg 9-l em-' "C-') 5.65 x 104 - 
P (g Cm-3) 1.904 - 

(T (dyn cm-l) 119 - 
y (dyn cm-l "C-') 0.07 - 
S 2.93 x 1 0 4  - 
Pr 9.25 - 
MC 16.7 267 
kC 1.48 2.56 
' R C  0 0.060 * 90 23 
hc (cm) 0.43 0.25 

Uc (cm 9-l) 0.26 4.2 
c& (em s-l) 0 0.25 
6, ("C cm-') 1 .o 17 

- c p  (erg g-' "C-l) 1.88 x lo7 

f,* (H4 0 1 .o 

Ca 6.2 x 9.9 x 10-4 

TABLE 2. An application of the theory to a 1 mm layer of liquid NaNO, a t  320 "C 

critical surface speed U,, the critical phase speed c;, and the critical temperature 
gradient b,. The first layer, composed of liquid silicon, has a similar instability for 
both the linear and the return flow. This is due to its small Pr = 0.023. The instability 
takes the form of a hydrothermal wave propagating at k 8 6 O  from the negative x-axis 
for the linear flow and k76" for the return flow. The frequency of the oscillations 
are 0.51 Hz and 0.61 Hz respectively, while the wavelengths are 15.0 and 17.5 times 
the depth respectively. 

The second layer is composed of liquid NaNO,, which has a Pr = 9.25. For the linear 
flow, the instability takes the form of longitudinal rolls a pair of which is about 4.3 
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times the depth of the layer. With the return flow, the instability is a hydrothermal 
wave propagating a t  + 2 3 O  from the negative x-axis. I ts  frequency is 1 Hz and its 
wavelength is 2.5 times the layer depth. 

The phase speed for the resulting hydrothermal waves is quite small in both 
examples, being about G8y0 of the free-surface speed. The free-surface speed is 
much smaller for the NaNO, layer than for the silicon layer because of the larger 
viscosity and the lower sensitivity of surface tension to temperature for NaNO,. 

The limit S+co results in an  undeformed interface of the layer. The parameter 
that measures the magnitude of the surface deformation is the capillary number, 
defined as 

M 
Ca = ~ 

Pr S 

In  each of the above examples, the capillary number for a neutral disturbance is about 
10-3-10-4. Thus our assumption of a non-deformable free surface in the theory is 
reasonable. 

Most of the experimental data available are those of Schwabe & Scharmann (1979) 
and Chun & Wuest (1979). These studies were done using a cylindrical half-floating- 
zone geometry. Thus comparison with our infinite-layer model can only be done in 
a qualitative sense. Our prediction of an obliquely travelling hydrothermal wave 
roughly corresponds to the instability seen in these experiments. For both studies 
the critical Marangoni number is about lo4, where M has a lengthscale given by the 
axial length of the cylinder. Moreover, the aspect ratios are all near unity, so that 
the Marangoni numbers based on the scales used in this paper, where we equate the 
radius of the cylinder with depth, are still about lo4. For NaNO, our computed M ,  
is about 267. This large difference in M ,  between theory and experiment can be 
attributed to, among other things, the effects of a cylindrical geometry and to the 
end effects of a finite geometry. I n  addition, the thermal conditions we use on our 
layers are idealized, e.g. 

Because the phase speed of the disturbances does not change much over the entire 
range of Pr and thus with changes in M ,  of two orders of magnitude, this might be 
in reasonable agreement with experiment. Chun & Wuest (1979) report that  the phase 
speed of the disturbance in the azimuthal direction is on the order of 1 yo of the 
free-surface velocity for methanol. The Prandtl number of this fluid is 6.8, and we 
compute cRc = 0.059 and I++ = 27’. In  the direction normal to the basic-state flow, 
the phase speed would be 0.03, which is qualitatively in agreement with the observed 
instability. 

Chun & Wuest (1979) also discuss the mechanism of the thermocapillary instability 
that they observed experimentally. However, their mechanism ultimately rests on 
the results of a disturbance energy analysis for buoyancy-driven convection and so 
cannot apply. Smith (1982) did the disturbance energy analysis on the thermocapillary 
problem discussed in the present work. From these results, we were able to describe 
correct mechanisms for the thermocapillary instability. 

is not necessarily linear in practice. 

8. Conclusions 
The basic mechanism (Pearson 1958) that  produces classical Marangoni convection 

cells can also operate in a thermocapillary shear layer to produce stationary 
longitudinal rolls. This will occur if the flow-induced basic-state temperature field 
corresponds to  the layer being ‘heated from below’. Viscous forces are primarily 
responsible for the steady convection field of this instability but, due to the non-zero 
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basic-state velocity, convective acceleration effects induce a stabilizing horizontal 
velocity perturbation that increases as Pr decreases. As a result, the critical 
Marangoni number and the critical wavenumber depend on the Prandtl number. 

We also find a new oscillatory instability that takes the form of two hydrothermal 
waves that propagate obliquely to the direction of the surface flow. The mechanism 
for this instability involves the transfer of energy from the horizontal (axial) basic-state 
temperature field to the disturbances through horizontal convection when Pr is small, 
and the transfer of energy from the vertical basic-state temperature field to the 
disturbances through vertical convection when Pr is large. Convective acceleration 
effects become very important in setting up the oscillating convection field for this 
mode. 

For a linear flow with B = 0, oblique hydrothermal waves are the preferred mode 
of instability when Pr < 0.6, and two-dimensional hydrothermal waves are preferred 
when 0.6 < Pr < 1.6. If Pr > 1.6, longitudinal rolls are preferred. 

For a return flow, hydrothermal waves exist over the entire range of the Prandtl 
number. The critical Marangoni number is always slightly larger than the M ,  for a 
linear flow and the critical wavenumber always slightly less for small values of Pr. 
For large Pr, M ,  is an order of magnitude greater than M ,  for longitudinal rolls. 

The linear-theory problem for a static liquid layer is degenerate in that the 
planform of the instability cannot be determined (Scanlon & Segel 1967). The form 
of the disturbance, i.e. hexagonal cells, is selected by nonlinear effects. I n  the dynamic 
layer, a degeneracy occurs for hydrothermal waves in that two sets of waves become 
unstable a t  the same time, one moving with a component in the positive y-direction 
and one in the negative y-direction. Thus the preferred form of the disturbance, i.e. 
an oblique right-moving wave, an oblique left-moving wave or some combination of 
the two, can also be selected by nonlinear interaction. 

Both Schwabe & Scharmann (1979) and Chun & Wuest (1979) have documented 
the existence of an oscillatory instability in the thermocapillary convection field of 
a cylindrical floating zone. The return-flow solution would be the two-dimensional 
analogue of the cylindrical velocity field. The qualitative agreement between our 
theory and these experiments gives us encouragement that the mechanism which 
causes hydrothermal waves in an infinite layer will produce the same instability in 
a cylindrical geometry. 

This research was supported through contract no. NAS8-3388 1, National Aeronau- 
tics and Space Administration ; Material-Processing-in-Space Program. 
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